Impacts of Mineral Nutrition on Growth of Crop Plants

Ismail Cakmak

Sabanci University, Istanbul-Turkey cakmak@sabanciuniv.edu

TOPICS

- Mineral Nutrients in Photosynthesis
- Mineral Nutrients in Translocation of Photoassimilates (Yield Formation-Root Growth)
- Effect of Mineral Nutrition on Photooxidative Damage of Leaves
- Particular Roles of Micronutrients in Crop Production (e.g., pollination, diseases tolerance...)
- Role of Seed Nutrients in Seedling Vigour
- Impairments of Nutritional Status of Plants by Glyphosate
- Micronutrient Deficiencies in Human Populations

Mineral Nutrients in Photosynthesis

Mineral Nutrients required for photosynthetic electron transport and for ATP formation

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Mineral Nutrients required for photosynthetic electron transport as well as for ATP formation

Photosynthetic electron transport chain with photosystem // and / photophosphorylation;

Magnesium is the central ion of chlorophyll. Its deficiency causes chlorosis

Magnesium Deficiency in Bean

Major function of manganese in photosynthesis

Mn is constituent of the water splitting enzyme (Hill reaction) within the electron transport chain for photosynthesis.
(2 H₂O → 4H⁺ + 4e + O₂)

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Major functions of iron in Photosynthesis

- Biosynthesis of chlorophyll
- Formation of chloroplast protein
- Involvement in many redox processes

Chloroplasts (Spinach)

+ Fe

Larbi et al. 2004) Photosynth. Res. 89, 113-126

Nitrogen is important for an effective use of absorbed light energy in photosynthesis

Verhoeben et al. Plant Physiol. 1997, 113: 817-824

Effect of Potassium on Photosynthesis in Cotton

Bednarz, et al. 1998, Environ. Exp. Bot. 39: 131-139

Translocation of Photoassimilates within Plants and Role of Mineral Nutrients

Source leaves deliver sugar to tissues on the same end of the plant

Transport of photoassimilates into sink organs (e.g., roots, seeds, tubers) show high dependency on adequate supply of potassium and magnesium

Young leaves, shoot tips

SINK ORGANS

Flowers, seeds,

Roots, tubers

Accumulation of Photoassimilates in Leaves of K and Mg Deficient Leaves

Cakmak et al., 1994b, J. Exp. Bot.

Relative distribution of total carbohydrates between shoot and roots (%)

Cakmak et al., 1994a

Effect of Mg deficiency on starch content in sugar beet leaves, as detected by lugol staining

Days 12

Days 16

Days 20

Hermans et al., 2005 Planta 220: 541-549 Sucrose, chlorophyll and maximal quantum efficiency and electron transport rate of PSII in sugar beet plants with deficient (O) and adequate () Mg supply. Hermans et al., 2004 Planta -Mg quantum efficiency (ФРо) 0.90 FW) Sucrose Maximal PSII 0.85 (µmol eq glu g⁻¹ Sucrose .80 0.75 Max. Quantum eff. 0.70 +Mg Days of treatment Days of treatment PSII electron transfer rate Chlorophyll (nmol g⁻¹ FW) Chlorophyll PS-II e-transport

Days of treatment

Days of treatment

Relationship between sucrose and potassium concentrations in the first expanded leaves of cotton

Gerardeaux et al., 2009, Plant Soil: 324, 329-343

Sucrose export from Leaves

0.7 ±0.3

-Mg

3.4 ±0.8

+Mg

(mg Glucose equiv . g-1 DW . 8h⁻¹)

Cakmak et al., 1994b J. Exp Bot.

Shoot and root dry weight of bean plants with deficient and adequate Mg supply

Dry weight (g plant⁻¹)

Before any visible change occurs in shoot, root growth is impaired under low Mg supply.

In field, impaired root growth under low Mg supply is not recognised !!

Cakmak et al., 1994a J. Exp Bot.

Effect of Mg on Root and Shoot Growth in Wheat

Low Mg

Low Mg after MgSO4 Spray

Adequate Mg

> Hakli et al. unpublished

Sink Organs are very sensitive to K and Mg deficiencies

Sink Organs are very sensitive to K and Mg deficiencies

Cakmak and Kirkby, 2008, Physiol. Plant.

+Mg

-Mg

Video Film Root growth with low and adequate Mg Suypply

Some Conclusions Regarding K and Mg Effect on Sugar Transport

- As a consequence of impaired carbohydrate translocation, roots of K and Mg deficient plants are much smaller. Reduced root growth under K or Mg deficiency will result in a limited nutrient and water uptake.
- A high K and Mg status of leaves is needed for adequate photo-assimilation and re-translocation of photoassimilates into seeds/roots. This is of particular relevance under conditions of inhibited root uptake of Mg (drought, high K supply, low pH soil).
- Late foliar application of Mg and also of K (during reproductive developing stage) will guarantee an efficient re-translocation of photo-assimilates into harvest products (e.g. grains, fruits, tubers), particularly under stress conditions with inhibited Mg or K uptake (e.g. drought, low pH)

PHOTOOXIDATIVE DAMAGE

PHOTOOXIDATIVE DAMAGE UNDER MINERAL NUTRIENT DEFICIENCY

REMEMBER: Photosynthetic Electron Transport and Use of Light Energy in CO2 Fixation

Cakmak, 2005; Soil Sci. Plant Nutr.

Photosynthetic Electron Transport and Superoxide Radical Generation

Mg-deficient plants highly sensitive to high light

Bean plants grown at low Mg supply

Cakmak and Kirkby, 2008, Physiol Plant

Shaded and not-shaded primary leaves of the same Mg-deficient plant

Cakmak and Kirkby, 2008, Physiol Plant
Partially shaded Mg-deficient leaves

Mg deficient plants are highly susceptible to high light intensity

Cakmak and Kirkby, 2008, Physiol Plant

Growth of bean plants with deficient K supply under low and high light intensity

Marschner and Cakmak, 1989

Enhancement of photooxidative damage in K-deficient leaves

Partially shaded K-deficient bean leaves

Marschner and Cakmak, 1989

K and Mg is greatly needed for efficient use of absorbed light energy in photosynthetic CO_2 fixation to avoid light damage.

Plants under high light intensity have additional requirement for Mg and K in order to mitigate light damage

ZINC-DEFICIENT PLANTS ARE HIGHLY PHOTOSENSITIVE

Increases in light intensity rapidly cause development of chlorosis and necrosis in Zn-deficient plants

Cakmak, 1988: PhD Thesis, Stuttgart-Hohenheim Univ.

Primary leaves of Zn-deficient bean plants grown at different light intensities

80 µmol m⁻² s⁻¹ 230 µmol m⁻² s⁻¹ 490 µmol m⁻² s⁻¹

Cakmak, 2000; New Phytologist, 146: 185-205

Zinc Deficiency Makes Plants Susceptible to High Light

Cakmak, 2000; New Phytologist, 146: 185-205

Zn Deficient Plants are Highly Susceptible to Zn Deficiency

Marschner and Cakmak, 1989, J. Plant Physiol Cakmak, 2000; New Phytologist, 146: 185-205

Zn Deficiency chlorosis in citrus tress occurs mostly on sunny side of trees

Micronutrients: Why are micronutrients of great importance?

- In many different agro ecosystems micronutrients are growth limiting, and this problem is often hidden
- Micronutrients can play an important role in abiotic and biotic stress resistance (especially resistance against diseases, drought or heat).
- Micronutrients play a particularly important role in reproductive growth (e.g., in pollination)
- Micronutrients are of great importance for plant, human and animal health

Major Functions of Plant Micronutrients

- Constituents of cell walls and membranes: B, Zn
- Constituents of enzymes: Fe, Mn, Cu, Ni
- Activation of enzymes: Zn
- Involvement in electron transport in photosystems: Fe, Cu, Mn, (Cl)
- Involvement in stress tolerance: Mn, Zn, Mo...
- Involvement in reproductive growth (flower induction, pollination, fruit set...): Cu, Mn, Zn, B
- Human Nutrition: Zn, Fe, Se, I

Zinc Binding Proteins

Nearly 2800 Proteins are Zn-dependent

Nat.Struct.Biol. 6: 628-633

http://commons.wikimedia.org/ wiki/User:Splette

Physiological functions of Zn in plant metabolism

Besides its basic well established function in plant metabolism, Zn plays a specific role in:

1) pollination

2) mitigation of biotic and abiotic stresses such as drought, heat, high light intensity or pathogen pressure via detoxification of toxic oxygen radicals

3) Involvement in disease resistance

4) Involvement in seed viability

Due to structural impairments in cell membranes under Zn or B deficiency

Zinc or Boron Deficient Roots are Leaky:

Various carbon-containing compounds are released from roots into the surrounding soil that is rich in fungal and bacterial populations

ZINC and BORON PROVIDES RESISTANCE AGAINST PATHOGENIC INFECTION

WANCED ROOT EN

Amino acids

Sugars..

Zinc or B is highly needed for structural and functional integrity of cell membranes

Any impairment in structural integrity of cell membranes induces membrane permeability and extensive release of exudates

ROOT EXUDATES: feeding substrates for pathogens Root exudation of organic compounds in cotton, wheat and apple at low (-Zn) and adequate (+Zn) Zn supplies

Zn Treatment	Amino acids	Sugars	Phenolics
	()	µg g⁻¹ root 6	⁵ h ⁻¹)
		COTTON	
-Zn	165	751	161
+Zn	48	375	117
		WHEAT	
-Zn	48	615	80
+Zn	21	315	34
		APPLE	
-Zn	55	823	350
+Zn	12	275	103

Cakmak and Marschner, 1988, J. Plant Physiol.

Boron Deficiency-Induced Membrane Permeability

Leakage of K⁺, sucrose, phenolics and amino acids from sunflower leaves as influenced by B supply

В				Amino
supply	Potassium	Sucrose	Phenolics	acids
(µM)		(µ	ıg g-1 FW [2h]-´	¹)
0.01	630	900	79	163
0.20	390	440	72	122
1.0	52	70	17	33
20.0	18	20	13	23

Cakmak et al., 1995, Physiol. Plant.

EXUDATES: Excellent feeding substrates for pathogens

Correlation between Zn application and bare patch caused by Rhizoctonia in wheat

Thongbai et al., 1993, Plant and Soil

Critical Roles of Micronutrients in Seed Formation

During the transition phase from vegetative to the generative (reproductive) phase some distinct micronutrients play specific functions in grain yield formation through their positive impacts on pollination

Transient drought spells during flowering/ pollination results in a severe loss of grain yield through transient micronutrient (Zn, Mn, B, Cu) deficiency in the fast growing pollen tubes!

Example Zn: Specific high Zn demand for pollination Effect of Zn supply on growth, grain yield, viability and Zn concentration of

pollen in maize plants

Zn supply	Shoot Dry Weight (g/plant)	Grain yield (g/plant)	Pollen viability (%)	Zn conc. in pollen (mg/kg)
Adequate Zinc	74	70	85	75
Zinc Deficiency	67	18	20	27

Sharma et al., Plant Soil 124, 221-226; 1990

Example Cu: Specific high Cu demand for reproductive growth

Effect of Cu supply on vegetative and reproductivegrowth of wheatNambiar, Austr. J. Agric. Res. 27, 453-463; 1976

Cu supply (mg Cu/pot)	Vegetative growth straw (g/pot)	Reproductive growth grains (g/pot)
0	6.7	0
0.1	10.5	0
0.4	12.9	1.0
2.0	12.7	10.5

Inhibited grain formation by low Cu is mainly due to low pollen viability and pollen sterility (Agarwala et al., Proc. Indian Nat. Sci. Acad. B 46, 172-176; 1980)

Example Mo: Specific high Zn demand for pollination

Effect of the Mo supply to maize on numbers of pollen grains and pollen germination rate (Agarwala et al., Can. J. Bot. 1978

Mo supply	Mo concentration of leaves	Pollen grains	Pollen germination
(µg/L)	(µg/kg)	(No per anthere)	(%)
20.00	92	2437	86
0.10	61	1937	51
0.01	17	1300	27

Example Boron: Specific high **B** demand for pollination

Effect of increasing B supply on vegetative and reproductive growth of red clover

B supply (mg/kg soil)	Shoot DW (g/pot)	Flowers (No/pot)	Seed yield (mg/pot)
0	12.8	0	0
0.25	13.0	6	0
0.5	12.6	13	0
1.0	12.3	37	430
2.0	12.3	37	1190
4.0	8.7	34	740

(low B soil, Heilongjiang,China)

(Sherell, 1983)

Boron deficiency limits an optimal formation of kernels and cobs.

With sufficient B translocation

With limited B translocation

Inhibited pollination and fruit set in the mutant domatoes due to inhibited B translocation.

(Nogouchi et al., 2000; Ma et al., 2004)

For fast growing tissues in which transpiration rate is low such as apices, flowers and young fruits B-delivery through phloem can be an important transport process.

Tobacco Plants with varied B Mobility

Wild-Type plants: Phloem Immobile B Yield: 1 g seed Transgenic plants: Phloem Mobile B Yield: 21 g seed

Courtesy: P. Brown

Disease Tolerance and Mineral Nutrition Susceptibility of crop plants to pathogens is greatly affected by the nutritional status of plants

Effect of nutrient concentration on growth (noninfected plants) and on degree of a bacterial infection in *plants (relative values)*

Nutritional status of plants affects tolerance against pathogens through different mechanisms

For example

- Enhanced germination/infection of pathogen spores through exudation of sugars and amio acids from root or leaf cells caused by mineral deficiency (Ca, Zn, B deficiencies)
- Enhanced penetration of pathogens into cell walls due to instability or weakness of cell walls caused by nutrient deficiencies such as Ca, Mn, B or Cu deficiencies (e.g., reduced mechanical resistance).
- Enhanced formation of mechanical barriers (lignification, silification) and the synthesis of toxins (phytoalexins) against pathogenic attack (e.g. throghh improved supply of Si, Mn, Cu...)

Silicium deposition in cell walls represents an important physical barrier to pathogenic attack

Influence of enhanced Si supply on the incidence of fungal pathogens on leaves of rice

Increase of the mechanical resitance of cell walls by lignin deposition

Effect of Cu deficiency on lignification of cell walls in stems of sunflower (Helianthus annuus). Red color indicate presence of lignin

(from Marschner 1995)

Root lesions (take all) and lignin content in root tissue of wheat at different Mn treatments

Vari	Tot able	al length of <i>Ggt</i> lesions (mm)	Lignin content ^a (Abs ₂₈₀ /root system
Mn,	mg/kg soil		
0		38	0.14
3		28	0.12
30		23	0.25
30	0	22	0.28
By	affectin	g lignin synthesis	Mn suppresses

Rengel et al., 1994
Relationship between shoot Zn and Mn with *Rhizoctonia* infection rate

Steer et al., 2001, Plant Soil

Seedlings develop better when seeds are dense in mineral nutrients

Seed Nutrients

Seed nitrogen content is critical for better seedling vigor and growth

Effect of P-seed coating on growth and grain yield

Parameter	control	P-coating
Veg. Growth		
g plant ⁻¹	1.38	1.56
g m²	623	683
Yield		
g panicle ⁻¹	1.52	1.77
g m²	687	774
No of grains m ²	16 200 18 100	

Data from Peltonen-Sainio (Agron. J. 2006; 98:206-211)

Impact of Micronutrient Dense Rice Seed in Bangladesh

(data from J. Duxbury, 2002, Cornell Univ.)

Influence of Seed Zn Content on Growth of Bread Wheat on a Zinc-Deficient Soil in Central Anatolia

1.47 0.80 0.36 μg Zn seed-1 μg Zn seed⁻¹ μg Zn seed⁻¹ Ekiz et al., 1998, J. Plant Nutr.

Effect of Ni Concentrations in Barley Grain on Grain Viability

(Source: Welch, 1999, In: Mineral Nutrition of Crops. Fundemental Mechanisms and Implicitons, Food Products Press)

Agricultural solutions to global micronutrient malnutrition

Magnitude of the problem

Deficiency	Population at risk	Geographical region	High risk groups
Vitamin A	? 0.5 billion	Developing countries	Children aged <5 y, pregnant women
Zinc	2.9 billion	Developing countries	Children aged <5 y
Iron	2 billion	Worldwide	All, but particularly children and pregnant women
lodine	1.5 billion (1990) 0.5 billion (2000)	Worldwide	Children, prenatally and up to 2 y post-natally

Brown. Food Nutr Bull 2002; Stoltzfus. J Nutr 2001;131:565S-67S; West. J Nutr 2002;132:2857S-66S.

Micronutrient Deficiencies: Global Malnutrition Problem

Iron Estimated 2 billion

Zinc **Estimated 2** billion

www.harvestplus.org

Health Problems related to micronutrient deficiencies

Increase in anemia, morbidity and mortality

reductions in work productivity

impairments in immune system, physical growth, mental development

Kills more than 100,000 mothers during childbirth each year

(see: www.harvestplus.org)

Children particularly sensitive

>450,000 deaths/year children under 5 - 4.4% attributed to Zn deficiency

Black et al. 2008

The Lancet Maternal and Child Undernutrition Series

WHO REPORT (2002)

Leading 10 Risk Factors in Developing Countries

% Cause of Disease Burden

Underweight Unsafe sex Unsafe water Indoor smoke **Zinc Deficiency Iron deficiency** Vitamin A deficiency **Blood pressure** Tobacco Cholesterol

14.9% 10.2% 5.5% 3.7% 3.2% 3.1% 3.0% 2.5% 2.0% 1.9%

Intl' Zinc Assoc.

IZA in partnership with UNICEF started a program called 'Zinc Saves Kids'

www.ZincSavesKids.org

Solutions to Micronutrient Deficiencies

Supplementation
Food Fortification (not affordable in rural regions)

Golden Wheat Fortfied with Zn

<u>Major Reason: Low Dietary Intake</u>

High Consumption Cereal Based Foods with Low Micronutrient Concentrations

In number of developing countries, cereals contributes nearly 75 % of the daily calorie intake.

Agricultural Solutions (Breeding and Fertilizer Approaches)

ERTHLIZER

HarvestPlus-Biofortification Challenge Program www.harvestplus.org

Breeding new cereal cultivars with high micronutrient content in cereal grains

Coordinating Institutions:

International Food Policy Research Institute (IFPRI) Washington DC and CIAT-Colombia

Main Sponsors: Gates Foundation and World Bank

Main Sponsor of HarvestPlus Program

BILL& MELINDA GATES foundation

www.gatesfoundation.org

Studying grain, Karsana, Nigeria

"Two billion people in the developing world suffer from diets lacking essential vitamins and minerals.

Foods rich in vitamins and minerals are essential for a healthy diet. When diets do not contain sufficient amounts of vitamin A, folic acid, iodine, iron, and zinc, the consequences include significantly lower birth weight, a decrease in cognitive development, and increased susceptibility to other diseases."

2011 April - 2014 March

Bayer CropScience

. Sabancı . Üniversitesi

Rice Trials in Thailand

HarvestPlus

HarvestPlus Breeding Crops for Better Nutrition

Zinc Fertilizer Project

Chiang Mai University Sabanci University

Maize Trials in Zambia

Harvest PLus/GART/UNZA Zinc Fertilizer Biofortification Project ZAMBIA

GART

Wheat Trials in India

HARVEST-PLUS GLOBAL ZINC RESEARCH PROJECT ON BIOFORTIFICATION OF MAJOR CEREAL GRAINS THROUGH AGRONOMIC APPROACH.

Zinc Fertilizer Project

Institutions: Indian Agricultural Research Institute,New Delhi- 110012 India And Sabanci University,Istanbul,Turkey

Maize Experiments in Brazil

HarvestPlus

Zinc Fertilizer Project Brazil

IAC/APTA Fundag Sabanci University- Istanbul

Maize Trials in Zimbabwe

Rice Experiments in Thailand

Rice Experiments in Laos

International Zinc Association

Zinc Fertilizer Project

Sec.

Chiang Mai University Sabanci University RCCRC

Zinc trails in Zimbabwe

Zinc Fertilizer Project

Improving human nutrition through zinc fertilizer application

Trials in Pakistan

Maize Trials in Mozambique

Wheat trials in China, Yanglin-Xian

Rice Trials in China and Laos

Country/Location	-Zn	+Zn	Country/Location	-Zn	+Zn
	ma	ka ⁻¹		mg kg⁻¹	
India	ing kg		Mexico		
		. —	•Year-I	21	45
●Varanasi	29	47	•Year-II	36	60
●PAU-I	25	81	Turkov		
●PAU-II	28	77	e Konva	10	20
•PAU-III	26	61	•Adana	32	29 57
	40	65			۶ <i>۲</i> ۸۵
	49	05	•Eskisehir	23	43
●IARI	33	45		22	43
			China		
Kazakhstan			●Loc-I	28	54
●Loc-l	19	54	●Loc-II	19	26
•Loc-II	28	73	Australia		
			●Loc-I	18	39
Pakistan			Germany		
•Loc-l	27	48	 Average 	20	32
●Loc-II	28	44	Iran		
•Loc-III	30	40	 Average 	17	28
•Loc-IV	29	60	Brazil		
			 Average 	30	52

Grain Zn concentration in different countries with and without zinc fertilization

Average of all countries -Zn: 26 +Zn:50

Country/Location -Zn +Zn **Country/Location** -Zn +Zn mg kg⁻¹ mg kg⁻¹ Mexico India •Year-I 21 45 Varana 36 60 **Average Concentrations of** •PAU-I •PAU-II 12 29 **Grain Zn** •PAU-III 32 57 23 49 •PAU-IV 22 43 (10 Countries with 32 locations) •IARI 54 28 Kazakhstar 19 26 •Loc-l -Zn: 26 ppm •Loc-II 18 39 +Zn: 50 ppm Pakistan 32 20 •Loc-l Iran •Loc-II 28 44 17 28 Average •Loc-III 30 40 Brazil •Loc-IV 60 29 •Average 52 30

Grain Zn concentration in different countries with and without zinc fertilization

Staining/Localization of Zinc in Wheat Grain (red color)

Localization of Zn in grain after foliar application?

LA-ICP-MS Tests on Seeds

White arrow: Zn in entire cross section

Black arrow: Zn in endosperm section

Cakmak et al., 2010, J. Agric. Food. Chem.

LA-ICP-MS Tests

cr

Foliar Zn Application at Stem Elongation and Booting Stages

Foliar Zn Application at Milk and Dough Stages

Cakmak et al., 2010, J. Agric. Food. Chem. 58:9092-9102

No Foliar Zn Application

Changes in Endosperm Zinc Concentrations

Detrimental Effects of Glyphosate on Mineral Nutrition of Plants

Water Quality for Glyphosate Spray

- Salts dissolved in water may reduce the effectiveness of glyphosate, particularly calcium and magnesium salts. These salts have a positive charge and may associate with the negatively-charged glyphosate molecule, replacing the isopropylamine or diammonium salts found in the formulated glyphosate product.
- Thus, the presence of calcium and magnesium salts in the carrier result in a reduction in glyphosate activity.

http://www.weeds.iastate.edu/mgmt/2001/glyphosate%20review.htm

Glyphosate binds with the cations to form a strong complexes which are not bio-available.

Only unbound glyphosate act as a herbicide.

Monsanto Canada Inc. 900 – One Research Drive Winnipeg, Manitoba R3T 6E3 Phone (204) 985-1000 Fax (204) 488-9599

STAKHOLDER UPDATE FOR INFORMATION ONLY

April 25, 2008

- "Q. Should I tank mix Roundup and fertilizers?"
- A. Monsanto does not recommend tank mixing of Roundup and fertilizers such as manganese due to the potential for the fertilizer to cause antagonism with the weed control effects and efficacy of Roundup."

Hard water contains levels of calcium (Ca magnesium (Mg), ir (Fe) or manganese (

Divalent cations atta negatively charged herbicide molecules reduce its herbicida activity

Effect of Glyphosate with and without calcium in the tank

Glyphosate binds with the cations to form a strong complex which is not bio-available. Only unbound glyphosate act as a herbicide. www.loveland.co.uk/ Gifs/X-Change-du-pont.gif

Glyphosate Drift

www.ipm.iastate.edu

Glyphosate Drift

Up to 10 % of the foliarly-applied glyphosate may move to non-target plants (Al-Khatib et al., 1999; Snipes et al., 1992).

This spray drift may be as high as 37 % of the applied glyphosate rate depending on the speed of wind and accuracy of the glyphosate application method (Nordby & Skuterud 1975).

Glyphosate-induced chlorosis/necrosis on younger leaves

Glyphosate

% of the recommended dose

0.6

0.3

 $\mathbf{0}$

Cakmak et al., 2009, Eur. J. Agronomy, in press

1.2

0.9

Effect of at increasing glyphosate application on **leaf concentrations** of macronutrients in soybean

Glyphosate Rate	Ca	K	Р	Mg
(% of recommended)		('		
0	2.23 ± 0.23	2.63 ± 0.51	0.23 ± 0.06	0.88 ± 0.14
0.06	1.84 ± 0.10	2.40 ± 0.02	0.22 ± 0.02	0.72 ± 0.01
0.2	1.92 ± 0.16	2.56 ± 0.17	0.23 ± 0.02	0.76 ± 0.09
0.6	1.56 ± 0.58	2.52 ± 0.98	0.23 ± 0.09	0.58 ± 0.22

Cakmak et al., 2009, Eur. J. Agron.

Effect of at increasing glyphosate application on **leaf concentrations** of micronutrients in soybean

Glyphosate Rate	Fe	Mn	Zn	Cu	
(% of recommended)	$(mg kg^{-1})$				
0	49 ± 10	232 ± 62	93 ± 15	5 ± 1	
0.06	54 ± 8	160 ± 3	78 ± 5	5 ± 1	
0.2	51 ± 0	190 ± 27	84 ± 11	5 ± 1	
0.6	40 ± 16	121 ± 48	65 ± 23	4 ± 1	

Cakmak et al., 2009, Eur. J. Agron.

Conclusion

- Glyphosate is antagonistic to the uptake, transport and accumulation (tissue concentration) of divalent cations such as Mg, Mn and Ca, possibly due to the <u>formation of poorly soluble glyphosate-metal</u> <u>complexes (??)</u>
- A new risk assessment for glyphosate including the changes in nutritional status of plant is urgently needed,

Thank You...

2255

Sabanci University

www.zinccrops2011.org

Istanbul 2013 International Plant Nutrition Colloquium

1. IPNC 1954 Nancy- France

...

12. IPNC 1993 Perth- Australia
13. IPNC 1997 Tokyo- Japon
14. IPNC 2001 Hannover-Germany
15. IPNC 2005 Beijing-China
16. IPNC 2009 Sacramento/Davis-ABD **17. IPNC 2013 Istanbul-Turkey**

XVII IPNC 2013 Istanbul TURKEY