V Congreso Boliviano de la Ciencia del Suelo Oruro, 11-13 de Marzo de 2009

Eficiencia de uso de nutrientes y mejores prácticas de manejo para la nutrición de cultivos de grano

Fernando O. García

Instituto Internacional de Nutrición de Plantas

WWW.IPNI.NET

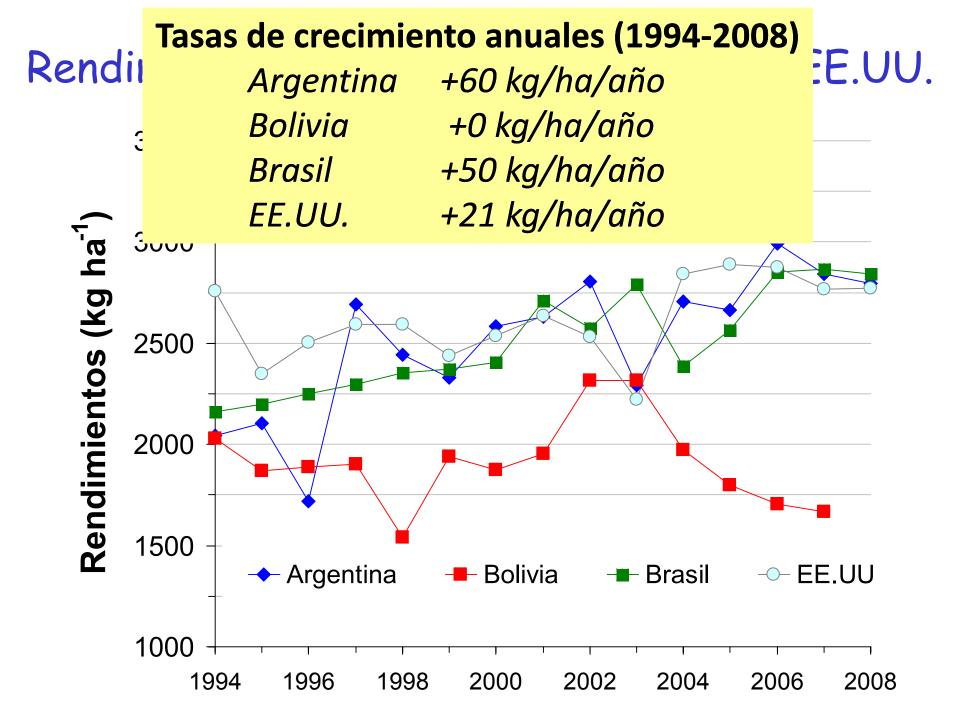
Temario

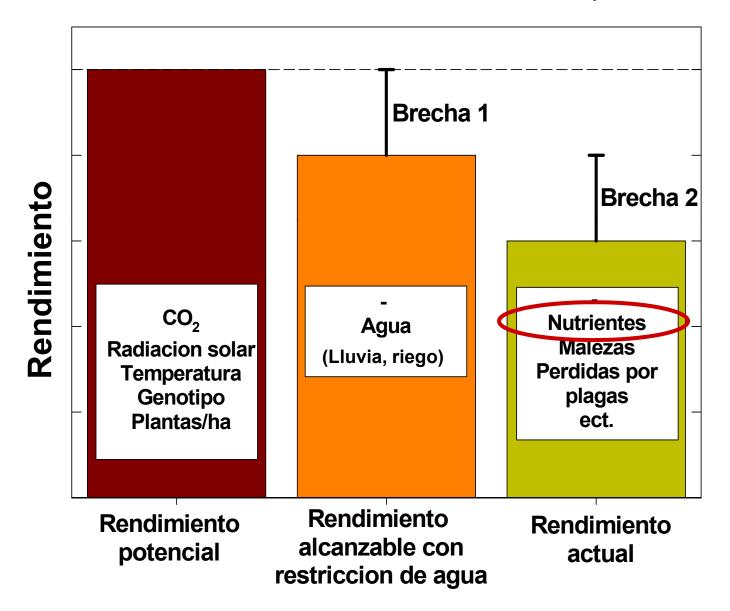
- Intensificación y sustentabilidad de los sistemas de producción
- Mejores practicas de manejo (MPM) de nutrientes y fertilizantes
 - > Inserción en los sistemas
 - Cuantificación: Eficiencias de uso de recursos e insumos
- Eficiencia de uso de los nutrientes
- MPMs para el uso de nutrientes y fertilizantes: Algunos ejemplos
- Conclusiones

Escenario actual

 Demanda creciente de alimentos, forrajes, fibras y biocombustibles

Desafío actual


- Lograr altos rendimientos en suelos aptos para el cultivo y reducir la expansión agrícola hacia tierras menos aptas buscando:
 - -Satisfacer la demanda de granos a nivel mundial,
 - -Maximizar la eficiencia productiva y económica del uso de recursos e insumos,
 - -Preservar y/o mejorar la calidad del ambiente


Sustentabilidad

Sustentabilidad, en el contexto de la producción agrícola-ganadera, implica preservar y/o mejorar

- La capacidad productiva del sistema desde el punto de vista agronómico, económico y ambiental
- La calidad de los recursos renovables y no renovables incluidos en el sistema productivo (suelo, agua, aire, biodiversidad, otros)
- Entre estos recursos, se destaca el suelo como recurso finito no renovable

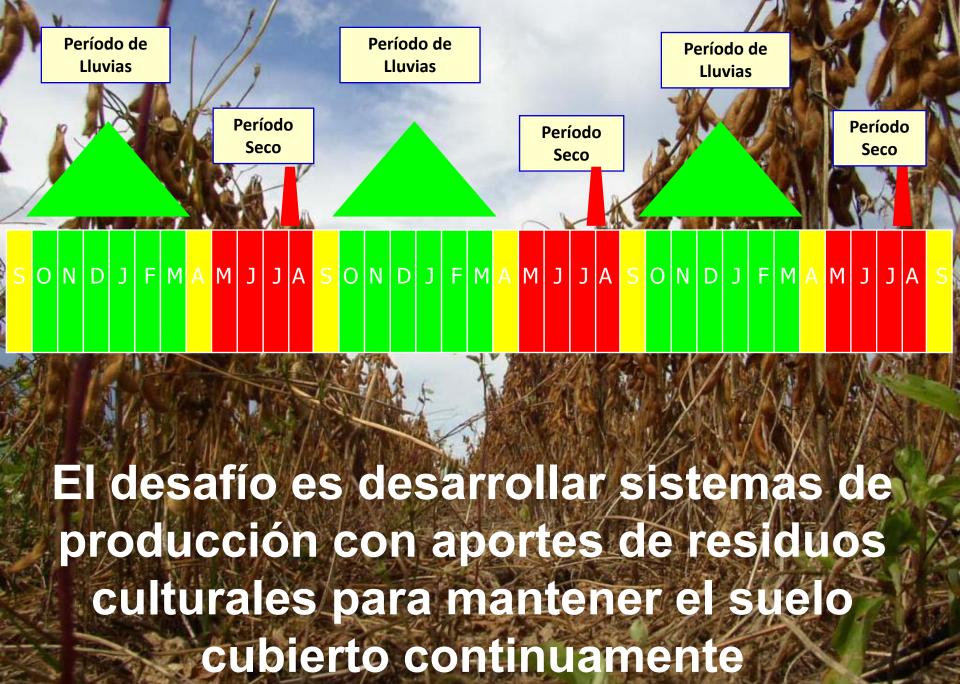
Las brechas de rendimiento

Alternativas de manejo del sistema para una producción sustentable

Rotaciones

Siembra Directa

Nutrición balanceada



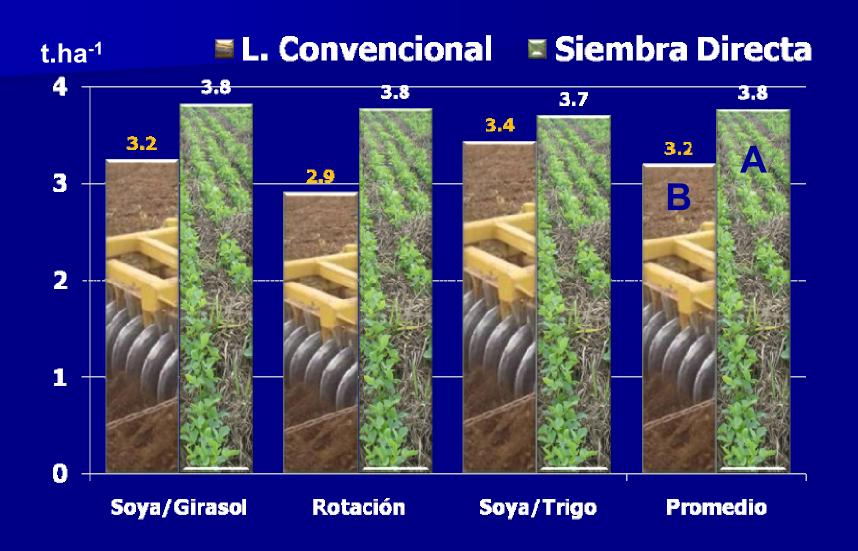
Rotación de cultivos

Secuencia planificada y ordenada de cultivos con el objetivo de:

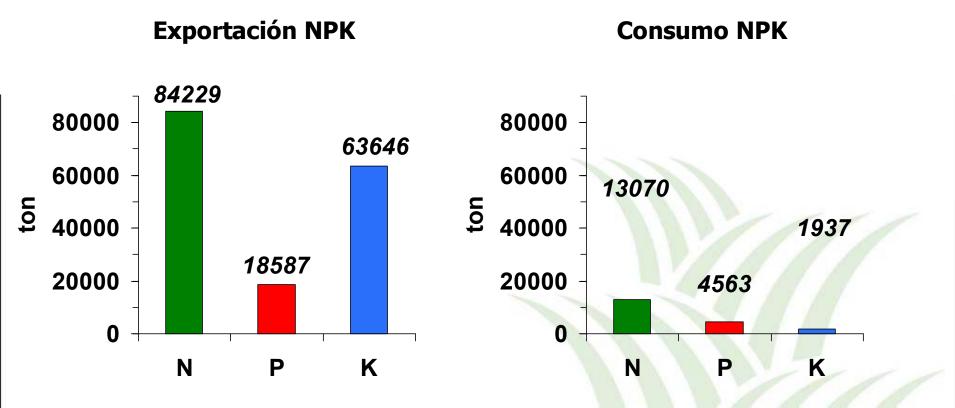
- maximizar la productividad,
- minimizar los riesgos,
- y preservar los recursos involucrados.

Fuente: Sá et al. 2007

Rotaciones con Cultivos de Cobertura

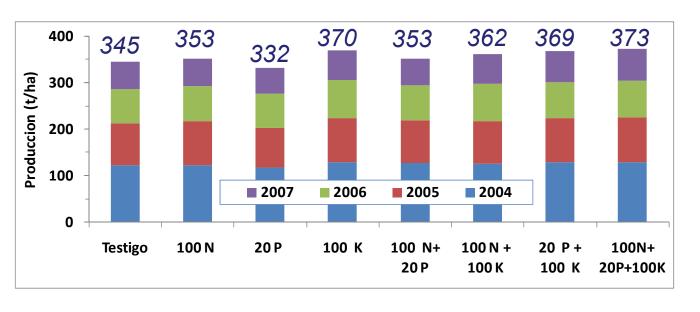


"El no roturado del suelo asociado al retorno de rastrojos estimula la formación de macroagregados resultando en la protección física de la MO del suelo"

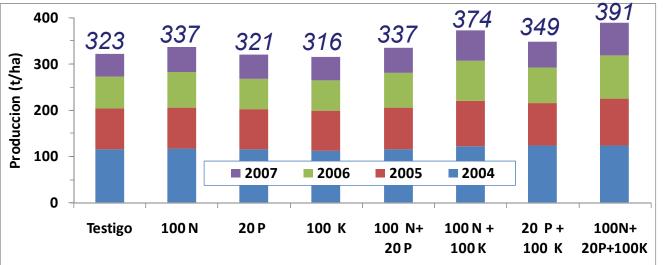

J. C. Moraes Sá

PAS ANAPO – Peña Siles y colaboradores, 2007 Rendimiento de grano de Soya, Verano 06/07, CEA-2

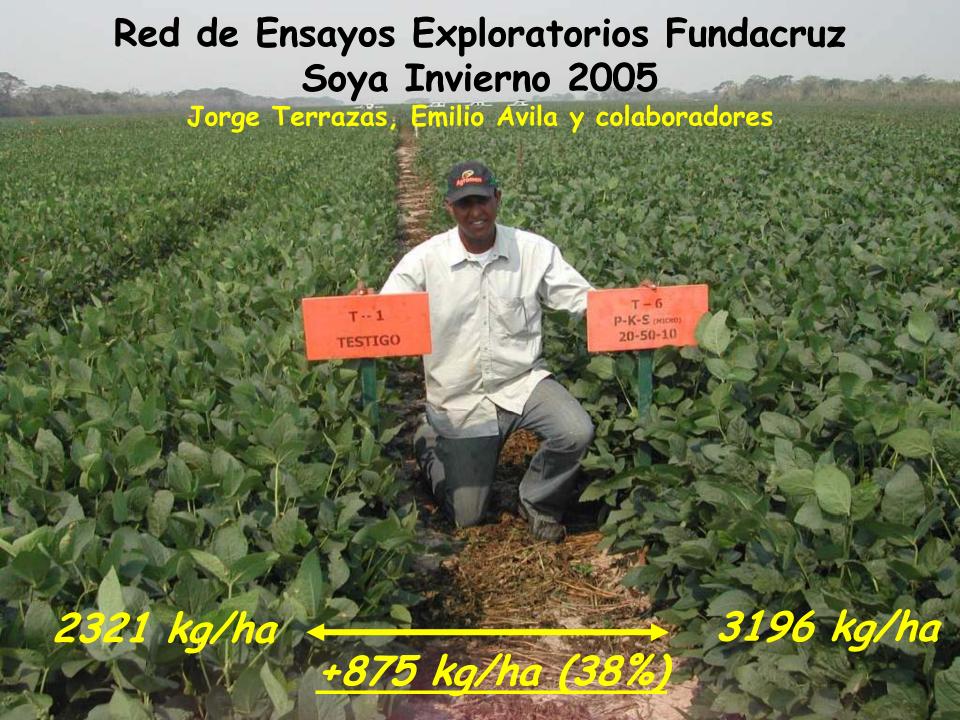
Exportación y Consumo de Nutrientes en Bolivia 2003-04

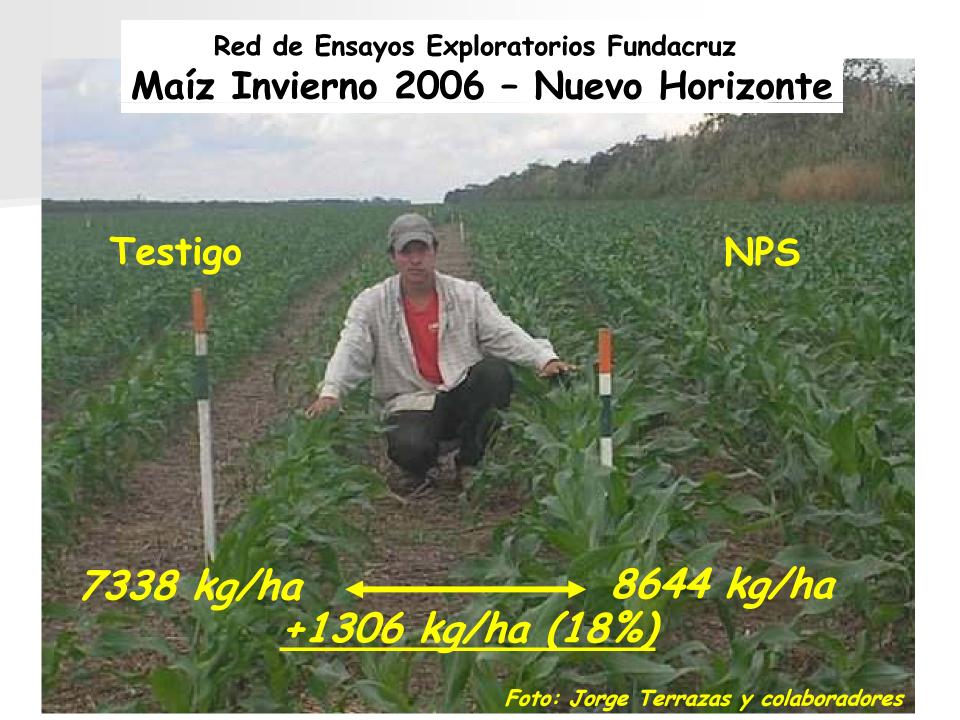


La reposición de los nutrientes extraídos por los cultivos es del 16%, 25% y 3% para N, P, y K, respectivamente

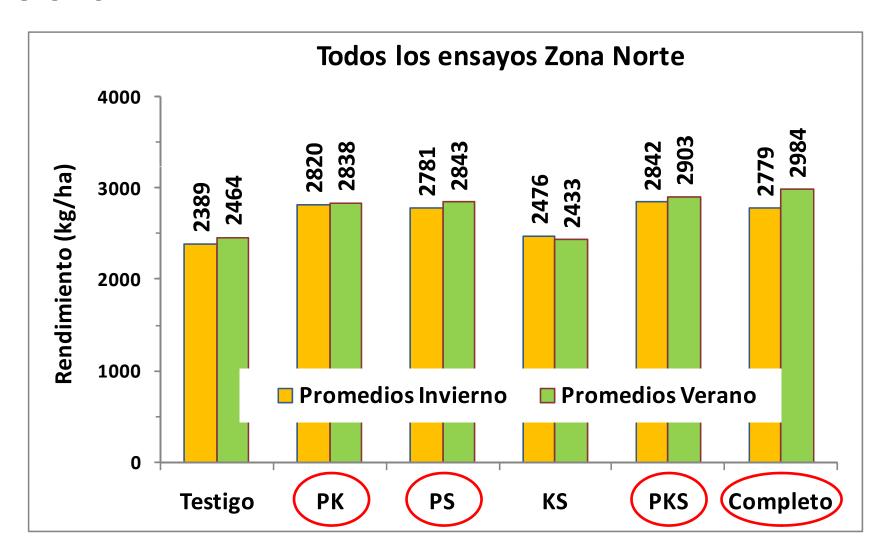

Fertilización de Caña de Azúcar

Costa y Parra - CITTCA (Saavedra, Santa Cruz, Bolivia)




Suelo Arenoso pH 5.6 MO 1.4% P 9 ppm K 0.24 cmol/kg

Suelo Arcilloso pH 7.3 MO 2.5% P 7 ppm K 0.37 cmol/kg


Dif.sig. al 1% por K + N

Soya: Rendimientos promedio para todas las campañas en Invierno y Verano

Siembra Directa

Rotaciones Fertilidad

Residuos: Cobertura, cantidad y calidad

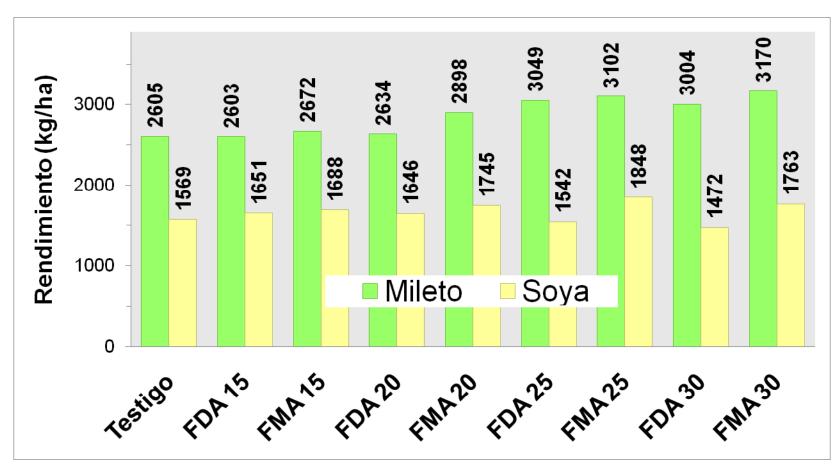
Materia orgánica

Suelo "vivo"

Sustentabilidad

Las Mejores Prácticas de Manejo de Fertilizantes (MPMF)

Eficiencia de uso y consumo de agua en maíz bajo diferentes tratamientos de fertilización


Don Osvaldo 2005/06, G. Beltramo y col. (AAPRESID)

Tratamiento	Rendimiento (kg/ha)	EUA (kg/mm)	Consumo (mm)	Agua a Madurez (mm)
Testigo	4088	8.9	461	51
NP suficiencia	5211	11.4	452	88
NPS suficiencia	9334	19.6	475	39
NPS reposición	10901	21.9	498	40

Precipitaciones siembra a madurez
386 mm

P en Mileto/Soya Invierno 2007 – Zona Norte

- Mileto sembrado 25/3/07 y desecado a floración
- Fertilizantes aplicados al voleo 15 días después de la siembra
- Soya sembrada 3/7/07
- Precipitaciones (mm): Mayo 145; Junio 0; Julio 35; Agosto 23; Sept 0; Oct 90; Nov 173

Índices agronómicos para la eficiencia de uso de nutrientes

Adaptado de Dobermann, 2007; Snyder y Bruulsema, 2007

Índices	Cálculos	Rango de referencia para cereales Ej. Para N y P
Eficiencia Agronómica	EA = (kg ∆rendimiento del cultivo / kg de nutriente aplicado)	 10-30 kg/kg N (>25 en sistemas bien manejados, a bajo nivel de N utilizado o en suelo) 30-50 kg/kg P (según disponibilidad en suelo)
Eficiencia aparente de Recuperación	ER = (kg de nutriente absorbido / kg de nutriente aplicado)	 0.3-0.5 kg/kg N (0.5-0.8 en sistemas bien manejados, a bajo nivel de N utilizado o en suelo) 0.15-0.30 kg/kg P
Eficiencia Fisiológica	EF = (kg ∆rendimiento / kg de nutriente absorbido)	 30-90 kg/kg N (55-65 es un rango óptimo para una nutrición balanceada a altos niveles de rendimiento)
Productividad Parcial de Factor	PPF = (kg de rendimiento del cultivo / kg de nutriente aplicado)	 40-80 kg/kg N (> 60 en sistemas bien manejados, a bajo nivel de N utilizado o en suelo) 300-400 kg/kg P en maíz
Balance Parcial del Nutriente	BPN = (kg nutriente removido / kg nutriente aplicado)	 < 1 en sistemas deficientes en el nutriente (mejora de fertilidad) > 1 en sistemas bien provistos de nutriente

Índices agronómicos para la eficiencia de uso de nutrientes - Ejemplos

EA, PPF y ER de N en cereales en distintas regiones del mundo (Dobermann, 2007)

	EA-N	PPF-N	ER-N
Cultivo/región	kg grano/ kg N aplicado	kg grano/ kg N aplicado	kg N absorbido / kg N aplicado
Maíz – EE.UU.	12	61	0.36
Arroz – SE Asia	12	49	0.31
Trigo - India	11	44	0.34

ER de N, P y K en cereales en ensayos de Asia (Dobermann, 2007)

	ER-N	ER-P	ER-K
Cultivo/región	kg N absorbido / kg N aplicado	kg P absorbido / kg P aplicado	kg K absorbido / kg K aplicado
Arroz – SE Asia	0.33	0.24	0.38
Trigo – India	0.58	0.27	0.51
Maíz - China	0.50	0.24	0.44

Índices agronómicos para la eficiencia de uso de nutrientes - Ejemplos

BPN y PPF de N y P para los principales cuatro cultivos de grano de Argentina Estimaciones 2007/08

	В	PN	PPF	
Cultivo	kg N removido / kg N aplicado	kg P removido / kg P aplicado	kg grano / kg N aplicado	kg grano / kg P aplicado
Maíz	1.14	0.78	87	296
Trigo	0.86	0.61	48	174
Soja	-	5.46	-	1011
Girasol	1.50	1.23	69	201

EA, BPN y PPF de P para soja en los ensayos exploratorios de Fundacruz Santa Cruz de la Sierra – Invierno 2005

	Rendimiento	EA	BPN	PPF
Tratamiento	kg/ha	kg soja / kg P aplicado	kg P aplicado / kg P removido	kg grano / kg P aplicado
P0	2754	-	-	-
P20	3263	25	0.88	163

Las Mejores Prácticas de Manejo de Fertilizantes (MPMF)

- Las MPM en el uso de fertilizantes (dosis, fuente, momento y ubicación) interactúan entre ellas, con las condiciones edafoclimáticas y las otras prácticas de manejo de suelo y de cultivo.
- •La combinación adecuada de dosis-fuente-momento-ubicación es específica para cada condición de lote y/o sitio.
- •Las MPM no solo afectan al cultivo inmediato, sino frecuentemente a los <u>cultivos subsiguientes en la rotación</u>.
- •Las decisiones de implementación de las MPM de fertilizantes impactan la productividad y sustentabilidad del suelo, un recurso finito no renovable sobre el que se basa la producción agropecuaria nacional.
- •Las interacciones entre los nutrientes son muy importantes debido a que la deficiencia de uno puede restringir la absorción y la utilización de otros: Importancia de la <u>nutrición balanceada</u> de los suelos y los cultivos.

Toma de decisiones en el manejo de nutrientes

POSIBLES
FACTORES
DE SITIO

APOYOS PARA LA TOMA DE DECISIÓN

Cultivo
Suelo
Productor
Aplic. Nutrientes
Calidad de agua
Clima
Tecnología

Demanda cultivo
Abastecimiento suelo
Eficiencia aplicación
Aspectos económicos
Ambiente
Productor/Propietario

Dosis recomendadas
Probabilidad de ocurrencia
Retorno económico
Impacto ambiental
Momento de aplicación
Etc.

Acción

Resultado

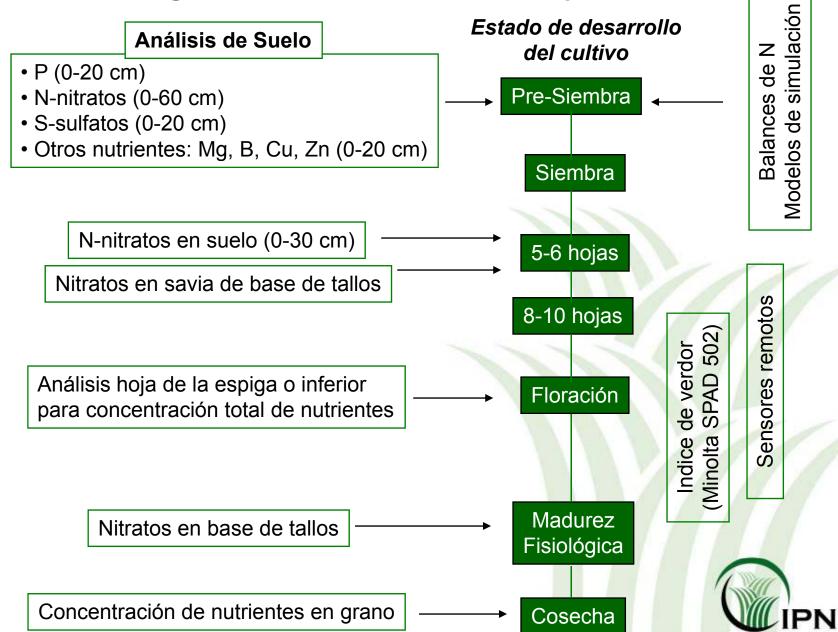
Decisión

RETROALIMENTACIÓN

Salida

Fixen, 2005

Necesidades nutricionales de maíz

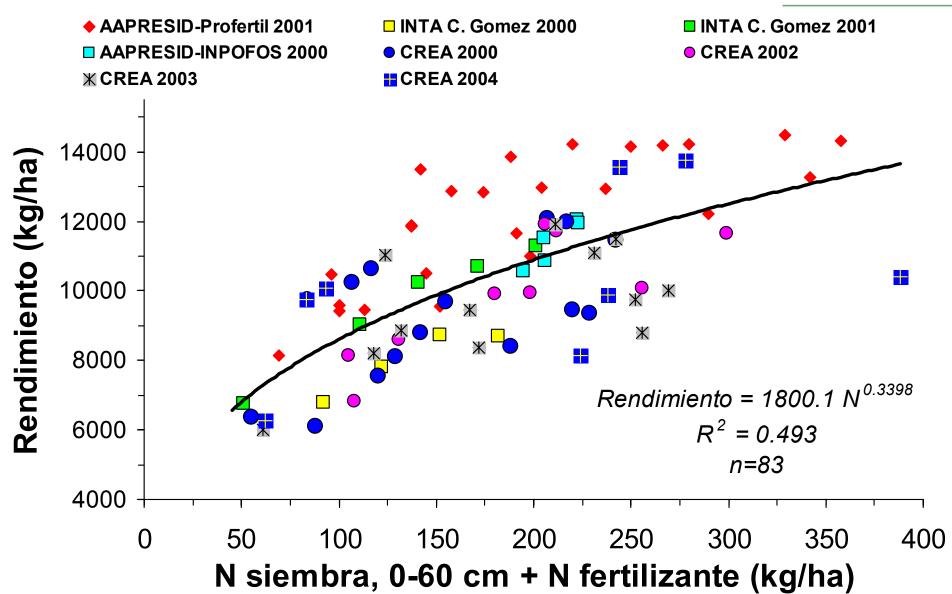


Rendimiento de 10000 kg/ha a 14% de humedad de grano

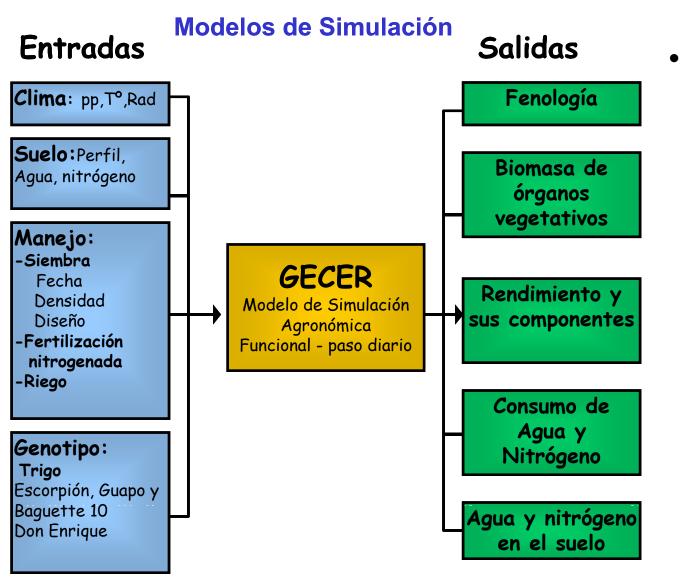
	Do avvo vivo i o voto	Indice de	Rendimiento de 10000 kg/	
Nutriente	Requerimiento	Cosecha	Necesidad	Extracción
	kg/ton	%	kg	kg
N	22	0.68	193	132
Р	4	0.76	35	27
K	19	0.21	167	35
Ca	3	0.07	26	2
Mg	3	0.53	26	14
S	4	0.35	35	12


Fuente: Ciampitti y García (2007) — Disponible en www.ipni.net/lasc

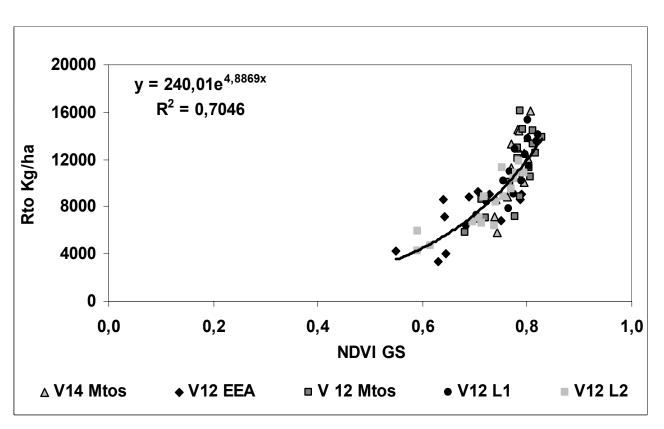
Diagnóstico de la fertilidad para maíz


Inoculación de soja

A. Perticari — INTA Castelar-Inocular


N disponible a la siembra y Rendimiento de Maíz

Uso de modelos de simulación para el manejo de la fertilización nitrogenada


E. Satorre y colaboradores - AACREA-Facultad de Agronomía (UBA)

- Condición de sitio (Escenario): Suelo, ciclo de cultivo, fecha de siembra, densidad, disponibilidad de agua a la siembra, análisis de suelo
 - Serie histórica climática (Localidad)
 - Modelo de simulación agronómica (MSA)
- Evaluación de rendimientos, respuestas y riesgo

Relación entre el NDVI determinado con un sensor GreenSeeker® en distintos estadios y el rendimiento de maíz

Melchiori y col. 2005 - EEA INTA Paraná

NDVI, Índice normalizado de diferencias de vegetación

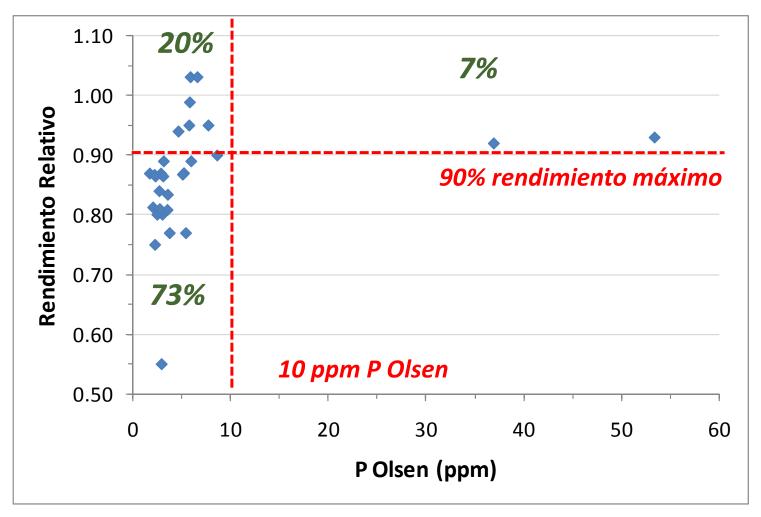
Fertilizantes nitrogenados Momento, Formas y Fuentes de aplicación

- Aplicaciones en 5-6 hojas son más eficientes bajo condiciones húmedas entre la siembra y la aplicación
- Aplicaciones a la siembra presentan similares eficiencias con bajas precipitaciones entre la siembra y 5-6 hojas
- La incorporación es la forma de aplicación más eficiente de cualquier fuente nitrogenada.
- Aplicaciones superficiales con temperaturas medias del aire mayores de 15°C durante 3-4 días resultan en pérdidas por volatilización de amoníaco a partir de fertilizantes que contengan urea.
- En aplicaciones superficiales de urea sobre un suelo/rastrojo seco, las pérdidas por volatilización son prácticamente nulas.
- Las pérdidas por volatilización e inmovilización serán potencialmente mayores a mayor cobertura de residuos.
- La aplicación en bandas superficiales concentradas de UAN o urea en superficie reduce el riesgo de volatilización y la inmovilización.

Inhibidores de la ureasa

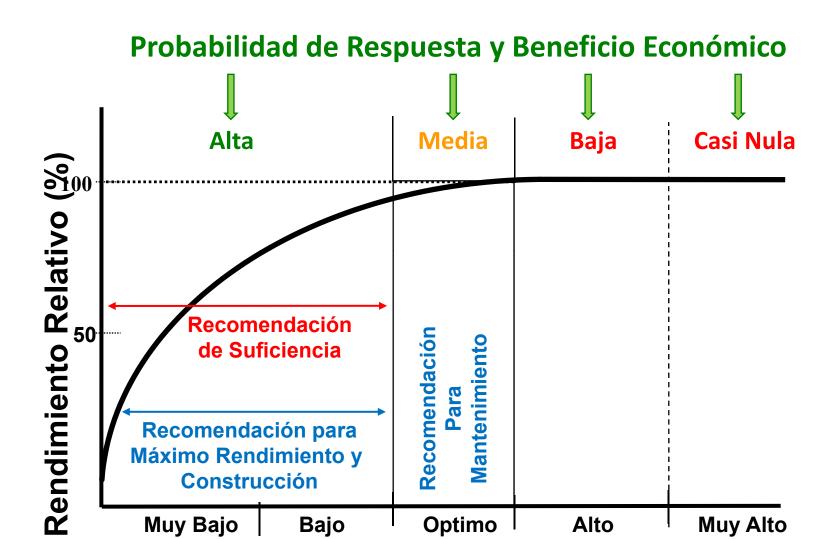
Maíz de primera en Rafaela (Santa Fe) Fontanetto, Bianchini y col., 2007/08

Tratamiento	Perdidas N-NH ₃	Rendimiento	Eficiencia agronómica
	%	kg/ha	kg maíz/kg N
Testigo	-	7334	-
Urea 70N	10	8381	15
Urea 140N	25	9623	16
Urea 70N + NBPT	4	9166	26
Urea 140N + NBPT	6	10368	22


¿Cómo deberíamos manejar fósforo?

 Conocer el nivel de P Bray según análisis de suelo

Rendimiento relativo de soya, maíz y trigo en función del P Olsen del suelo



Respuestas significativas en el 80% de los sitios con P Olsen < 10 ppm

¿Cómo deberíamos manejar fósforo?

- Conocer el nivel de P Bray según análisis de suelo
- Decidir
 - Fertilización para el cultivo (Suficiencia), o
 - Fertilización de "construcción y mantenimiento": Implica mantener y/o mejorar el nivel de P Bray del suelo (Reposición)

Nivel de P en el Suelo (Bray-1, Olsen o Mehlich-3, ppm)

Soja

Recomendación de fertilización fosfatada según criterio de suficiencia modificado

		Rendimiento (kg/ha)			
Categoría de P extractable	< 3000	3000-5000	>5000			
		Dosis de P (kg P/ha)				
Muy Bajo	20	30	30+			
Bajo	10	15	20			
Medio	0	0	10			
Alto	0	0	0			
Muy Alto	0	0	0			

Garcia et al., 2008

Evolución del P Olsen del suelo en los ensayos de Zona Norte

Red de Ensayos Exploratorios de Fundacruz

Tratamiento	Aplicación P	Extracción P	Balance P	P Olsen inicial	P Olsen final	Diferencia P Olsen
		kg P/ha			ppm P -	
KS	0	90	-90	4.6	3.3	-1.3
PKS	120	109	+11	4.6	6.4	+1.8

Balances positivos de P (aplicado > removido) permiten mejorar el nivel de P del suelo

Situaciones de deficiencia de azufre

- Suelos con bajo contenido de materia orgánica, suelos arenosos
- Sistemas de cultivo mas intensivos, disminución del contenido de materia orgánica

Diagnóstico de deficiencia de azufre

- Caracterización del ambiente
- Nivel crítico de 10 ppm de S-sulfatos (en algunas situaciones)
- Balances de S en el sistema

CONSIDERACIONES FINALES

- Intensificación + Sustentabilidad: Optimizar las eficiencias de uso de recursos e insumos
- La fertilización de cultivos debe manejarse en función de los principios científicos basados por la información experimental, las MPMs
 - Evaluar el uso de tecnologías (tradicionales y nuevas) desde el punto de vista agronómico, económico y ambiental
- Aplicar las MPM de fertilizantes: dosis correcta, fuente correcta, momento correcto y ubicación correcta
 - Análisis de suelo como herramienta básica en la toma de decisión de la fertilización.
 - Mantener fertilizaciones balanceadas según las necesidades del lote y el cultivo.
 - El resultado es el mayor retorno agronómico, económico y ambiental, no solamente de la inversión en fertilizantes, sino también de la tierra, y de otros recursos e insumos.
- "El proceso productivo no se reduce a un único ciclo agrícola"

Nutrición y Sustentabilidad

Tiessen, 2003

- La producción siempre causa degradación: Es imposible producir un superávit de productos orgánicos para exportar sin movilizar nutrientes, interrumpir los ciclos biológicos de los nutrientes y reducir la disponibilidad de nutrientes.
- El objetivo del manejo adecuado de suelos y nutrientes es limitar y balancear los procesos de degradación con procesos de producción, y evitar pérdidas innecesarias.

"El país no tiene otra alternativa que practicar una agricultura basada en la ciencia y la tecnología, ya que poseer algunas de las mejores tierras agrícolas del mundo no es suficiente"

Informe "Las Ciencias Agropecuarias en la Argentina" R. Blake, E. Fereres, T. Henzell y W. Powell Fundación Antorchas, 2002

Un desafío para toda la Sociedad

