Chloride Fertilization of Wheat in North America

Kim Polizotto, Ph.D. Senior Agronomist PotashCorp

History of Chloride Fertilization

- Chloride recognised as an essential nutrient in 1954 (Broyer et al)
- Required in very small amounts for crop growth (~100 mg kg⁻¹)
- Deficiency induced in nutrient solutions
 - Cl⁻ widespread in soil and water
 - Responses considered unlikely in field
- Potential role of Cl⁻ in cropping systems recognized in the 1970s in the Phillippines, Europe and northwestern U.S.
- Yield increases from Cl⁻ application verified in the field in Oregon (Christensen et al, 1981)

Winter Wheat Grain Yield as Function of N Source

Christensen et al. (1981)

Take-all root rot of winter wheat was reduced by KCI in Oregon

CI⁻ has improved crop yields in the Great Plains

- Over 210 trials in KS, MN, MT, ND, SD, MB and SK have evaluated CI⁻ response in wheat and barley
- Significant yield response in 48% of trials
- Average response of 315 kg/ha
- CI⁻ responses also occurred in other crops

Yield Increase May Be Due To Disease Suppression

- Wheat: take-all root rot, common root rot, fusarium root rot, stripe rust, leaf rust, septoria, tanspot
- Barley: common root rot, fusarium root rot, spot blotch
- Corn: stalk rot

Foliar disease severity in flag leaves and grain yield for Butte spring wheat, Flandreau, S.D. % disease severity = % of flag leaf affected by the indicated disease at milk stage.

Response of Spring or Durum Wheat Cultivars to CI⁻ Fertilization

Chloride - An Essential Plant Nutrient

Chloride ...

accelerates plant development
5-7 days for winter wheat
1-5 days for spring wheat
reduces lodging
suppresses diseases
root & leaf diseases

Improved growth, advanced maturity

0 kg Cl⁻/ha

17 kg Cl-/ha

Physiological Leaf Spot

US Winter Wheat Harvested Acres

US Other Spring Wheat Harvested Acres

R

Median ammonium acetate equivalent soil test K levels, 2005.

Where Are Chloride Soil Test Levels Low?

- Regions where Cl⁻ deposition from rainfall is low.
- Regions where rainfall is high enough to leach Cl⁻
- Regions where KCI fertilizers are little used
- Sandy and low OM soils

Chloride Soil Testing

Chloride is now part of the micronutrient soil test package for most soil testing labs in the U.S. and Canada.

Chloride Soil Test Guidelines*

(Cl⁻(kg/ha 0.6 m depth)

Low	<34
Medium	34-67
Sufficient	>67

International Plant Nutrition Institute (IPNI)

Soil testing can help predict Cl⁻ response

	Res		
Category	Soil Cl	Frequency	Average
	(kg/ha 0.6 m)	%	kg/ha
Low	<u><</u> 34	69	269
Medium	35- 67	31	175
High	> 67	<1	20

Based on responsive spring wheat varieties grown at 36 locations in South Dakota.

Soil Testing and Chloride?

- The chloride anion (Cl⁻) is very mobile with water.
 Higher Cl⁻ levels observed in different landscape positions,, lower in upper slope (Franzen, ND).
- Topography effects are different depending on the weather (Schoenau, SK)

Relationship of Sampling Depth on Soil Chloride Levels in Oklahoma

Sampling Depth

Hailin Zhang, Oklahoma State university

Chloride Fertilizer Application

Cl is very soluble ...

- Placement is flexible:
 - broadcast = banded = topdress

 Seed-placement is very effective but application rates are lower due to concern for salt injury. 45 kg/ha KCI or less when placed with the seed.

Yield and test weight of Pioneer 2158 winter wheat as affected by timing of NH₄Cl application (45 kg/ha), Texas¹

Parameter	Fall Cl	Spring CI	Control (0 Cl)
Yield (kg/ha)	4004.5a*	4589.1b	3648.4a
Test weight (lbs/bu)	58.0b	60.0c	56.0a
% Plant Cl**	0.28a	0.73b	0.29a

* P=.05

** Determined on whole plant samples at anthesis

1 These results illustrate that in high moisture environments, spring topdress Cl applications are more effective in suppressing leaf rust and increasing yield than fall pre-plant applications.

