

Australian Government

MELBOURNE

Department of Agriculture, Fisheries and Forestry

Grains Research & Development Corporation

Climate change & nutrient demand

Rob Norton

Regional Director, Australia & New Zealand.

acknowledgements to:

S.K. Lam, S. Seneweera, N. Fernando, R. Armstrong, S. Tausz-Posch,

M. Tausz, G. Fitzgerald, D. Chen.

F. Garcia – for translation of paper.

XXIV Congreso Argentino de la Ciencia del Suelo, Bahía Blanca, Buenos Aires, Argentina.

The future?

- Neils Bohr
 - Making

 predictions is
 difficult,
 especially when
 they are about
 the future...

Outline

- The challenge!
- Why is Australia concerned?
- Climate change and crop responses
- Impact on plant demand
- Impact on soil supply
- Reviewing the 4Rs for future management.

What is challenge?

Population growth

Change in diets due to increasing household incomes in developing countries ... incomes above \$16,000 per yr will rise from 352 mil in 2000 to 2.1 bil by 2030 (World Bank)

Demand for non-food uses of crops.

Food demand to double by 2050

ECONOMIC

ENVIRONMENTAL

Rate

Place

SOCIAL

Source

Time

- Static world land area
- Climate change
- Land for nature
- Social justice
- Sustainable resource use
- Energy & Resource availability

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE

Why is Australia concerned?

- Agriculture ~4% of GDP
- 500 Mha of farming land (~60%)
 - 50 Mha cropping
- Grains Industry = \$7 billion (45 Mt)
- Dairy Industry = \$2.5 billion
- Beef and sheep meats = \$9 billion
- Sugar Industry = \$1.3 billion

Total ar	ea plante	ed to ea	ch crop (as a percentage)
crops 2%		Pulse	is 8%
Sorghum 3%	Barley		
	20%	01	Wheat 56%
Oats 5%		Seeds 6%	
Source: A	BARES		

South-eastern Australia

- Farmers have faced difficult times
- Warmer temperatures
- Lower rainfalls
 - LTA Horsham = 417 mm (±107)
 - Decade 2001-2010 = 346 mm
- Yield strongly linked/limited rainfall

Southern Wet Season Rainfall Anomaly - Southeastern Australia

WUE = Y/(ET-SE)

WUE = Y/ET

Southern Wet Season Mean Temperature Anomaly - Southeastern Australia

Elevated CO₂ improves photosynthesis and plant water use efficiency, but, high temperature and lower rain fall have a negative impact on crop growth and productivity in most parts of Australia.

- Elevated [CO₂] increased dry matter production of trees (28%), legumes (24%), C₃ species (20%) but not much for C₄ species (Ainsworth and Long 2005).
- Change in N (& water) uptake and C input
- Consequent change in soil N dynamics

Progressive Nitrogen Limitation

The decline of the availability of mineral N over time (e.g. 6-7 years) at elevated $[CO_2]$ when compared to ambient, if there is no new N input or reduction in N losses (Luo et al. 2004).

Adapted and modified from Luo et al. 2004

Examples

Possible eCO₂ effects on soil N dynamics

Adopted from National Sustainable Agriculture Information Service

Australian Grains Free Air Carbon Dioxide Enrichment Facility (AGFACE)

- Located at Horsham in southeastern Australia 36°S.
- Aim to answer the fundamental question of how the supply of N and water interact with higher temperatures under elevated CO₂ in relatively low yield potential situations *ie* 1 to 4 t/ha

Meta-analysis of "N dynamics in grain crop and legume pasture systems under elevated CO₂" 366 observations from 127 studies

Lam et al., 2012, Global Change Biology, 18, 2853–2859

Impact on plant demand (N)

and the second second

385 ppm CO

effects at crop flowering

- Inconsistent response during vegetative growth (Temperature)
- +21% Top Growth @ Flowering
- -7% Plant N content
- Some differences in root density (cm/cm³)

Root Length Density

Year	aCO ₂	eCO ₂
2007	1.14	1.82
2008	2.45	3.00
2009	0.86	0.96

Mean effects of eCO₂ at maturity

Mean effects of eCO₂ on N demand

Fertilizer N recovery – wheat

- PVC micro-plot (diameter 0.24 m; height 0.25 m) inserted to 0.20 m depth
- ¹⁵N-enriched (10.22 atom%) granular urea applied at 50 kg N ha⁻¹
- ¹⁵N atom% analysis by IRMS
- No significant CO₂ effect seen

Implication – N demand

- 20% increase in N removal irrespective of temperature and rainfall changes
 - REVIEW THE RIGHT RATE
- Most increase is after stem elongation (temperature).

- REVIEW THE RIGHT TIME/RATE - HIGHER RATES/LATER?

- The protein concentration decline occurs with bigger yield stimulation changes in N metabolism
 - Down-regulation of photosynthetic proteins
 - Lower protein/N content in leaves (NR)
 - Less N for remobilization to grain.
 - LATE FOLIAR N (HIGH EFFICIENCY)
 - NEW MORE INTERNALLY N-EFFICIENT "" WHEAT TYPES, NON-DOWNREGULATING

N recovery and **N** source

- If N>50% NH₄, higher N recovery under eCO₂
- Under ammonium dominant supply, significant response in N recovery
 - SHIFT TO AMMONIUM BASED N-SOURCES
 - ENHANCE AMMONIUM ACCESS (eg DMPP)

Source

Time

Rate

Place

Fernando et al. JCS submitted

Demand for other nutrients,

- Wheat from AGFACE
 - No change in grain K
 - Small decrease in grain P & S
 - N:S ratio & protein quality
 - Changes not just "dilution"
- Similar responses in soybean.
- Large grain response means:
 - 20% + K removal.
 - 20% + P removal

eCO₂ does not specifically affect plant access to P from sparingly soluble P sources. (Jin et al. 2013. P&Soil, 368, 315-328)

Srain Mineral Concentration gkg

C a

aCO.

eCO.

Soybean responses to eCO₂

- Experiments in China with CAAS.
- Elevated CO₂ increased growth of soy 16-18%
- Variety difference in %Ndfa.
- The amount of N fixed increased from 165 kg N/ha to 275kg N/ha.
- Expect legumes to be more responsive

Lam et al., 2012, Biol Fertil Soils, 48: 603-606.

eCO₂ effects on N₂ fixation parameters

Effect of eCO₂ on pulses/legumes

(Lam et al. 2012, CPS)

- Glasshouse experiments +/-P; aCO_2 , $eCO_2 3$ species
- Legumes responded to eCO₂ if P was supplied.
- No differences in %Ndfa due to [CO₂]
- N fixed increased due to growth stimulation
- Net negative N balance in pulses irrespective....
- Adequate P is important reducing the N deficit.

Fig. 1 Chickpea (a), field pea (b) and barrel medic (c) grown under different (CO₃) (a: ambient; e: elevated) and P inputs on Vertosol

Greenhouse gas emissions

- Static chambers (diameter 0.24 m; height 0.25 m)
- Sampled 5 times during season
- N₂O, CO₂ and CH₄ were analysed by gas chromatography
- CO₂+/- Irrigation

Effect of eCO₂ on GHG emissions

- Elevated $[CO_2]$ increased the emissions of N₂O (92-134%) and CO₂ (16-46%), but had no significant effect on CH₄ flux.
- Supplementary irrigation appeared to reduce N₂O emissions (36%), suggesting the reduction of N₂O to N₂ in denitrification process (WFPS > 70%).

eCO₂ effects on N budget

[CO₂]-induced changes in N budget in various cropping systems

	[CO ₂]-induced changes in									
	grain N removal (I)		N ₂ O emission (II)		amount of N fixed (III)		net effect			
	mean	95% CI	mean	95% CI	mean	95% CI	(III – I – II)			
	kg N ha ⁻¹ season ⁻¹									
C ₃ non-legume	12.4	4.6 to 20.4	0.22	-0.06 to 0.50	0	NA	-12.6			
grain legume	59.6	35.8 to 86.7	0.60	0.13 to 1.06	25.0	5.3 to 53.0	-35.2			
pasture legume	0	NA	-0.04	-0.12 to 0.05	53.0	28.3 to 81.1	53.0			
C ₄	11.8	1.5 to 22.1	0.16	-0.04 to 0.36	0	NA	-12.0			

The estimation was made based on the assumption that elevated $[CO_2]$ does not affect ammonia volatilization, N leaching plus runoff, removal by grazing and N deposition. Although predicted shifts in human diets and increasing per-capita consumption from 2000 to 2050 are associated with increased atmospheric N deposition onto global agricultural land (14 Tg yr⁻¹), the increase will be counterbalanced by the corresponding increases in ammonia volatilization (12 Tg yr⁻¹) and N leaching plus runoff (3 Tg yr⁻¹) (Bouwman *et al.* 2011)

Compared using yields from the experiments undertaken

eCO₂ & grain micronutrient concentration

Conclusions about eCO₂ and nutrition

- Supply capacity
 - No increased efficiency of accessing N from fertilizer
 - More roots at a higher density access more soil N
 - Higher OM input but similar C:N ratio
 - May lead to N immobilization *likely* that N limitation will occur

Potential for input

- Fertilizer N rate/source/time
- P supply at least maintained to ensure N input from legumes.

Conclusions related to eCO₂

- Higher N use efficiency, with reduced grain N concentration, but increased N removal in grain cropping systems.
- Extra N will be required to maintain soil N availability and sustain crop yield.
- The extra N could come from increased rates of fertilizer N application, or greater use of legume intercropping and legume cover crops.
- P supply for pulses/legumes will determine the severity of N limitation.
- Higher agricultural greenhouse gas emissions may offset some of the benefit of added C sequestration.
- Grain micronutrient concentration declines likely related to protein.

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE

Muchas gracias.....

.....por su atención Gracias AACS por la invitación. & al Dr Garcia IPNI

Acknowledgements

AGFACE Team: University of Melbourne: M Tausz, N Fernando, L Thilakarathne, S Posch, M Nicolas, S Barlow, R Lam, H Sultana, P Howie, S Seneweera.

Victorian State Department of Primary Industries (DPI): G Fitzgerald, G O'Leary, R Armstrong, J Brand, M Mollah, P Trebicki, J Luck, C Walker, J Panozzo, W Griffiths, N Mathers, J Nuttall, J Ellis, J Ellifson, M Munns, R Argall

Collaborators:

R Norton (IPNI), S Myers (Harvard Medical School), J Stangoulis (Flinders University), A Makino, (Tohoku University), J Conroy (University of Western Sydney), A. Mosier. E. Lin, X Han (CAAS)

Funding:

Australian Commonwealth Department of Agriculture, Fisheries and Forestry.

Grains Research and Development Corporation.

Victorian Department of Primary Industries.

The University of Melbourne.

International Plant Nutrition Institute.

http://www.piccc.org.au/AGFACE

